Salvianolic Acid A Protects H9c2 Cells from Arsenic Trioxide-Induced Injury via Inhibition of the MAPK Signaling Pathway.

نویسندگان

  • Jing-Yi Zhang
  • Gui-Bo Sun
  • Yun Luo
  • Min Wang
  • Wei Wang
  • Yu-Yang Du
  • Ying-Li Yu
  • Xiao-Bo Sun
چکیده

BACKGROUND/AIMS This study aimed to investigate whether Salvianolic acid A (Sal A) conferred cardiac protection against Arsenic trioxide (ATO)-induced cardiotoxicity in H9c2 cells by inhibiting MAPK pathways activation. METHODS H9c2 cardiac cells were exposed to 10 µM ATO for 24 h to induce cytotoxicity. The cells were pretreated with Sal A for 4 h before exposure to ATO. Cell viability was determined utilizing the MTT assay. The percentage of apoptosis was measured by a FITC-Annexin V/PI apoptosis kit for flow cytometry. Mitochondrial membrane potential (∆Ψm) was detected by JC-1. The intracellular ROS levels were measured using an Image-iTTM LIVE Green Reactive Oxygen Species Detection Kit. The apoptosis-related proteins and the MAPK signaling pathways proteins expression were quantified by Western blotting. RESULTS Sal A pretreatment increased cell viability, suppressed ATO-induced mitochondrial membrane depolarization, and significantly altered the apoptotic rate by enhancing endogenous antioxidative enzyme activity and ROS generation. Signal transduction studies indicated that Sal A suppressed the ATO-induced activation of the MAPK pathway. More importantly, JNK, ERK, and p38 inhibitors mimicked the cytoprotective activity of Sal A against ATO-induced injury in H9c2 cells by increasing cell viability, up-regulating Bcl-2 protein expression, and down-regulating both Bax and caspase-3 protein expression. CONCLUSION Sal A decreases the ATO-induced apoptosis and necrosis of H9c2 cells, and the underlying mechanisms of this protective effect of Sal A may be connected with the MAPK pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122

Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...

متن کامل

Portulaca oleracea protects H9c2 cardiomyocytes against doxorubicin-induced toxicity via regulation of oxidative stress and apoptosis

Abstract  Background and Objectives: Doxorubicin as an effective chemotherapeutic agent is frequently used in various cancers. Nowadays, the application of doxorubicin is limited due to its cardiotoxic effects. The important mechanism which is involved in the cardiac injury of doxorubicin is the generation of reactive oxygen species; therefore antioxidant compounds may reduce cardiotoxicity. ...

متن کامل

Salvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling

Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...

متن کامل

Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways

Objective(s):Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. Here, the protective effects of ferulic acid (FA) on hypoxia-induced neurotoxicity in PC12 cells were evaluated. Materials and Methods:We investigated the effect of FA on PC12 cells subjected to hypoxia stress, in vitro. Results:FA increased cell viability, prevented membrane damage (LDH r...

متن کامل

Inhibition of the leptin-induced activation of the p38 MAPK pathway contributes to the protective effects of naringin against high glucose-induced injury in H9c2 cardiac cells.

Leptin, a product of the obese gene, has been reported to contribute to the development of cardiomyocyte hypertrophy in patients with diabetes and to activate the p38 mitogen-activated protein kinase (MAPK) pathway in cardiomyocytes. In this study, we demonstrate that naringin, a citrus flavonone, protects cardiomyoblasts (H9c2 cells) against high glucose (HG)-induced apoptosis by modulating th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 41 5  شماره 

صفحات  -

تاریخ انتشار 2017